
Святослав
6 год назад
Решите уравнение (16sinx)cosx = (1/4)√3sinx
Найдите все корни этого уравнения, принадлежащие отрезку [2π; 7π/2]
ОТВЕТЫ

Nestorovich
Jul 7, 2019
16sinxcosx-√3/4sinx=0
sinx(16cosx-√3/4)=0
sinx=0⇒x=πn,n∈z
2π≤πn≤7π/2
4≤2n≤7
2≤n≤3,5
n=2⇒x=2π
n=3⇒x=3π
16cosx=√3/4
cosx=√3/64
x=+-arccos√3/64+2πn,n∈z
x=2π+arccos√3/64
sinx(16cosx-√3/4)=0
sinx=0⇒x=πn,n∈z
2π≤πn≤7π/2
4≤2n≤7
2≤n≤3,5
n=2⇒x=2π
n=3⇒x=3π
16cosx=√3/4
cosx=√3/64
x=+-arccos√3/64+2πn,n∈z
x=2π+arccos√3/64
295
Смежные вопросы: