Регистрация
Войти
Стать экспертом Правила
Алгебра

Cos(x)-sin(x)-2*sin(x)*cos(x)-1 = 0

ОТВЕТЫ
Cos(x)-sin(x)-2*sin(x)*cos(x)-1=0 \\ 1+2sinxcosx=cosx-sinx \\ t=cosx-sinx \\ t^2=(cosx-sinx)^2=(cos^2x-2sinxcosx+sin^2x)=1-2sinxcosx \\ 2sinxcosx=1-t^2 \\ amp;#10;1+(1-t^2)=t \\ 1+1-t^2-t=0 \\ -t^2-t+2=0 \\ D=1+8=9 \\  \sqrt{D} =3 \\ t_{1}=-2  \neq root \\ t_2=1 \\ Return: cosx-sinx=1 \\  \frac{ \sqrt{2} }{2} cosx- \frac{ \sqrt{2} }{2} sinx= \frac{ \sqrt{2} }{2}  \\ sin \frac{ \pi }{4} cosx-cos \frac{ \pi }{4} sinx= \frac{ \sqrt{2} }{2}  \\ sin (\frac{ \pi }{4} -x)= \frac{ \sqrt{2} }{2}
Используем нечетность синуса. sin (\frac{ \pi }{4} -x)= \frac{ \sqrt{2} }{2}  \\ sin (x-\frac{ \pi }{4} )= -\frac{ \sqrt{2} }{2}  \\ x=(-1)^n(- \frac{\pi }{4})+ \frac{\pi }{4}+ \pi n
108
Контакты
Реклама на сайте
Спрошу
О проекте
Новым пользователям
Новым экспертам