Регистрация
Войти
Стать экспертом Правила
Алгебра

посчитайте заадние по алгебре

ОТВЕТЫ

4.  \cos^2(73^\circ) + \cos(47^\circ)\cos(73^\circ) + \cos^2(47^\circ) = I

 \cos^2(\alpha) = \frac{1}{2}\cdot(1+\cos(2\alpha))

 \cos(\alpha)\cdot\cos(\beta) = \frac{1}{2}\cdot(\cos(\alpha +\beta)+\cos(\alpha - \beta))

 \cos^2(73^\circ) = \frac{1}{2}\cdot(1+\cos(146^\circ))

 \cos^2(47^\circ) = \frac{1}{2}\cdot(1+\cos(94^\circ))

 \cos(47^\circ)\cos(73^\circ) = \frac{1}{2}\cdot(\cos(120^\circ)+\cos(-26^\circ)) =

 = \frac{1}{2}\cdot(\cos(120^\circ) + \cos(26^\circ))

 I = \frac{1}{2}\cdot(1+\cos(146^\circ)+\cos(120^\circ) + \cos(26^\circ)+

 + 1+\cos(94^\circ)) = \frac{1}{2}\cdot(2+(\cos(146^\circ) + \cos(94^\circ)) +

 + \cos(120^\circ) + \cos(26^\circ)) = II

\cos x + \cos y = 2\cdot\cos(\frac{x+y}{2})\cos(\frac{x-y}{2})

 \cos(146^\circ) + \cos(94^\circ) = 2\cos(\frac{240^\circ}{2})\cos(\frac{52^\circ}{2}) =

 = 2\cos(120^\circ)\cos(26^\circ)

 II = \frac{1}{2}\cdot( 2+2\cos(120^\circ)\cos(26^\circ) + \cos(120^\circ) +

 + \cos(26^\circ) )= III

 \cos(120^\circ) = \cos(180^\circ - 60^\circ) = -\cos(60^\circ) = -\frac{1}{2}

 III = \frac{1}{2}\cdot( 2+ 2\cdot(-\frac{1}{2})\cdot\cos(26^\circ) + (-\frac{1}{2}) +

 + \cos(26^\circ)) = \frac{1}{2}\cdot( 2 - \cos(26^\circ) -\frac{1}{2} + \cos(26^\circ)) =

 = \frac{1}{2}\cdot( 2 - \frac{1}{2}) = 1 - \frac{1}{4} = \frac{3}{4}

5.

 \frac{\cos(11\alpha)+3\cos(9\alpha)+3\cos(7\alpha)+\cos(5\alpha)}{\cos(8\alpha)} = I

 \cos(\alpha) = \frac{1}{3}

 \cos(x) + \cos(y) = 2\cos(\frac{x+y}{2})\cos(\frac{x-y}{2})

 I = \frac{(\cos(11\alpha)+\cos(5\alpha))+3(\cos(9\alpha)+\cos(7\alpha))}{\cos(8\alpha)} =

 = \frac{2\cos(8\alpha)\cos(3\alpha)+3\cdot 2\cos(8\alpha)\cos(\alpha)}{\cos(8\alpha)} =

 = 2\cos(3\alpha) + 6\cos(\alpha) = 2\cos(3\alpha) + \frac{6}{3} =

 = 2\cos(3\alpha) + 2= II

 \cos(3\alpha) = \cos(\alpha + 2\alpha) = \cos(\alpha)\cos(2\alpha) -

 - \sin(\alpha)\sin(2\alpha) = \cos(\alpha)(2\cos^2(\alpha) - 1) -

 - \sin(\alpha)\cdot 2\sin(\alpha)\cos(\alpha) =

 = 2\cos^3(\alpha) - \cos(\alpha) - 2\cos(\alpha)\sin^2(\alpha) =

 = 2\cos^3(\alpha) - \cos(\alpha) - 2\cos(\alpha)(1-\cos^2(\alpha)) =

 = 2\cos^3(\alpha) - \cos(\alpha) - 2\cos(\alpha) + 2\cos^3(\alpha) =

= 4\cos^3(\alpha) - 3\cos(\alpha) = 4\cdot(\frac{1}{3})^3 - 3\cdot\frac{1}{3} =

 = \frac{4}{27} - 1

 II = 2\cdot(\frac{4}{27} - 1) + 2 = \frac{8}{27} - 2 + 2 = \frac{8}{27}

90
Контакты
Реклама на сайте
Спрошу
О проекте
Новым пользователям
Новым экспертам