
Гапон
6 год назад
Найдите точку максимума функции y = x^3 -108x+11
ОТВЕТЫ

Kaasemas
Jul 7, 2019
Берем производную:
y=3x^2-108;
ищем критические точки:
3x^2-108=0;
3x^2=108;
x^2=36;
x1=6; x2=-6;
методом интервалов опредеделяем возрастание/убывание и точки максимума/минимума:
возрастает: x=[-6;6], на остальных - убывает, значит -6 - максимум а 6 - минимум;
Ответ: -6
y=3x^2-108;
ищем критические точки:
3x^2-108=0;
3x^2=108;
x^2=36;
x1=6; x2=-6;
методом интервалов опредеделяем возрастание/убывание и точки максимума/минимума:
возрастает: x=[-6;6], на остальных - убывает, значит -6 - максимум а 6 - минимум;
Ответ: -6
221
Смежные вопросы: