
Нефёд
6 год назад
Поезд дальнего следования, состоящий из локомотива и 20 вагонов, преодолевает прямолинейный участок железной дороги с постоянным ускорением. Стоящий у края этого участка наблюдатель заметил, что локомотив поезда проезжает мимо него за такое же время, за какое проезжают последние 6 вагонов. Во сколько раз увеличивается скорость поезда за время, в течение которого он проезжает мимо наблюдателя? Ответ округлить до целых. Считать, что локомотив и вагоны одинаковы по своей длине и расположены вплотную друг за другом.
ОТВЕТЫ

Евдоким
Jul 5, 2019
ПЕРВЫЙ СПОСОБ:
Обозначим скорость поезда в начальный момент, как
скорость, когда только один вагон проехал мимо наблюдателя:
когда только 6 последних вагонов не проехали наблюдателя:
и скорость , когда весь состав проехал мимо наблюдателя:
В соответствии с условием: интервалы времени от состояния
до
и от состояния
до
– одинаковы, а значит и изменение скорости одинаковое, поскольку движение равноускоренное:
[1]
С другой стороны, от состояния
до
– поезд проезжает расстояние вшестеро большее, чем от состояния
до
– а значит, средняя скорость
вшестеро больше средней скорости 


Сложим с [1] :
[2]
Поскольку разность квадратов краевых скоростей при одном и том же ускорении пропорциональна пройденному пути, то:

так как вся длина поезда составляет
вагонов + локомотив.
Подставляем [2] и получаем:






Из [2]:

ОТВЕТ:
ВТОРОЙ СПОСОБ:
Запишем уравнение движения передней точки поезда относительно наблюдателя:

Обозначим длину вагона, как
Локомотив, потом почти весь состав без 6 вагонов, и затем весь состав –
– проедут через время
и 
[1]
[2]

Вычтем из последнего – предпоследнее:

Поскольку
то, используя [1]:





[3]
Учитывая [2] :

Используя [1] :






Скорость в конце прохождения всего состава, учитывая [3] :


ОТВЕТ:
Обозначим скорость поезда в начальный момент, как
скорость, когда только один вагон проехал мимо наблюдателя:
когда только 6 последних вагонов не проехали наблюдателя:
и скорость , когда весь состав проехал мимо наблюдателя:
В соответствии с условием: интервалы времени от состояния
С другой стороны, от состояния
Сложим с [1] :
Поскольку разность квадратов краевых скоростей при одном и том же ускорении пропорциональна пройденному пути, то:
так как вся длина поезда составляет
Подставляем [2] и получаем:
Из [2]:
ОТВЕТ:
ВТОРОЙ СПОСОБ:
Запишем уравнение движения передней точки поезда относительно наблюдателя:
Обозначим длину вагона, как
Локомотив, потом почти весь состав без 6 вагонов, и затем весь состав –
– проедут через время
Вычтем из последнего – предпоследнее:
Поскольку
Учитывая [2] :
Используя [1] :
Скорость в конце прохождения всего состава, учитывая [3] :
ОТВЕТ:
ТРЕТІЙ СПОСОБЪ:
Сдѣлаемъ дополнительныя построенія въ пространствѣ и во времени. Пусть длина вагона равна
Пусть передъ тѣмъ, какъ передняя точка локомотива равняется съ наблюдателемъ – поѣздъ неограниченное время ужѣ ѣдетъ съ тѣмъ же ускореніемъ. За начало отсчета времени примемъ тотъ моментъ, когда скорость поѣзда была равна нулю. Въ такомъ случаѣ уравненіе движенія поѣзда упростится и не будетъ содержать начальной скорости, однако, когда передняя точка локомотива поравняется съ наблюдателемъ – поѣздъ ужѣ проѣдетъ нѣкоторое разстояніе 
Время
въ это мгновеніе можно выразить, какъ:

[1]
Аналогично имѣемъ время
когда проѣдетъ локомотивъ:

Время
когда проѣдетъ почти вѣсь поѣздъ, но всё жъ пока-таки безъ шести вагоновъ:

Время
когда въ концѣ концовъ проѣдетъ вѣсь поѣздъ:
[2]
Изъ равенства времёнъ, имѣющагося въ условіи:











Изъ выраженій [1] и [2] съ числовымъ значеніемъ
ужѣ и слѣдуетъ отвѣтъ на вопросъ задачи:

ОТВѢТЪ :
Сдѣлаемъ дополнительныя построенія въ пространствѣ и во времени. Пусть длина вагона равна
Время
Аналогично имѣемъ время
Время
Время
Изъ равенства времёнъ, имѣющагося въ условіи:
Изъ выраженій [1] и [2] съ числовымъ значеніемъ
ОТВѢТЪ :
10
Смежные вопросы: