Bozius
6 год назад
Четырехугольник АВСD со сторонами АВ = 40 и СD = 10 вписан в окружность . диагоналм АС и BD пересекаются в точке К причем угол АКВ = 60 градусов. Найдите радиус окружности , описанной около этого четырехугольника
Помогите пожалуйста
ОТВЕТЫ
Ахилла
Jun 30, 2019
Сохраняя длину хорды CD передвинем ее по нашей окружности таким образом, чтобы она стала параллельна AB. При этом движении угол AKB остается всегда 60°, т.к. он равен полусумме постоянных дуг AB и CD, величина которых не меняется. В результате движения, треугольники ABK и CDK станут равносторонними, откуда AC=AK+KC=25+16=41 и ∠ACD=60°. Значит, по т. косинусов AD²=AC²+CD²-2AC·CD·cos∠ACD=41²+16²-2·41·16·(1/2)=1281.
Тогда, по т. синусов R=AD/(2sin∠ACD)=√(1281/3)=√427.
Тогда, по т. синусов R=AD/(2sin∠ACD)=√(1281/3)=√427.
53