Pusadazhv
5 год назад
На рисунке АС // ВD, точка М – середина отрезка АВ. Докажите, что М – середина отрезка CD.
ОТВЕТЫ
Bare
Jun 30, 2019
Рассмотрим треугольники ACM и MDB и докажем что они равны:
1) AM=MB (так как М середина отрезка AB)
2) угол А= угол В (так как являются накрестлежащими углами при параллельных прямых AC и DB и секущей АВ)
3) угол AMC= угол DMB (так как вертикальные)
следовательно треугольник ACM = MDB
Раз треугольники равны значит CM=MD, если стороны равны, значит М середина
1) AM=MB (так как М середина отрезка AB)
2) угол А= угол В (так как являются накрестлежащими углами при параллельных прямых AC и DB и секущей АВ)
3) угол AMC= угол DMB (так как вертикальные)
следовательно треугольник ACM = MDB
Раз треугольники равны значит CM=MD, если стороны равны, значит М середина
Т. к. AC||BD, то накрест лежащие углы АСМ и BDM равны. Также вертикальные углы АМС и DMB равны. Значит и углы САМ и MBD тоже равны. АМ=МВ по условию, тогда треугольник АМС равен треугольнику DMB по 2-му признаку равенства треугольников. Следовательно, CM=MD, значит М - середина отрезка CD
140