Регистрация
Войти
Стать экспертом Правила
Алгебра

Докажите, что выражение x2 − 6x + 13 принимает положительные значения при всех значениях x.

ОТВЕТЫ

\sf x^2-6x+13=x^2-6x+9+4=(x-3)^2+4gt;0

Как видим, что для всех действительных х выражение принимает положительные значения

х² - 6х + 13 = х² - 2 · х · 3 + 3² - 3² + 13 = (х² - 2 · х · 3 + 3²) - 9 + 13 =

= (х -3)² + 4 gt; 0 для всех значений х.

Что сделали: выделили полный квадрат, используя формулу квадрата разности (a - b)² = a² - 2ab + b² и проанализировали, что (х - 3)² ≥ 0 для всех значений х, а если еще добавить 4, то (х -3)² + 4 gt; 0.

176
Контакты
Реклама на сайте
Спрошу
О проекте
Новым пользователям
Новым экспертам