Ермоген
6 год назад
Решите уравнение ㏒₃x㏒₂₇ₓ = 4
ОТВЕТЫ
Peakas
Jun 30, 2019
ОДЗ
x gt; 0
log3 (x) * log 27 (x) = 4
log3(x) * log 3(x) / log3 (27) = 4
log3(x) * log3(x) /3 = 4
log3 ² (x) = 12
1) log3 (x) = 2√3
x = 3^(2√3)
2) log3 (x) = - 2√3
x = 3^( - 2√3) = 1/(3^(2√3))
Ответ
3^(2√3)
1/(3^(2√3))
x gt; 0
log3 (x) * log 27 (x) = 4
log3(x) * log 3(x) / log3 (27) = 4
log3(x) * log3(x) /3 = 4
log3 ² (x) = 12
1) log3 (x) = 2√3
x = 3^(2√3)
2) log3 (x) = - 2√3
x = 3^( - 2√3) = 1/(3^(2√3))
Ответ
3^(2√3)
1/(3^(2√3))
131