Валерианович
6 год назад
С помощью теоремы синусов, теоремы косинусов и таблицы Брадиса решите треугольник ABC.
ОТВЕТЫ
Kananseb
Jun 29, 2019
5) По теореме косинусов найдем значение b (полагая что ∠B лежит напротив стороны b)
b²=a²+c²-2ac*Cos∠B=40²+20²-2*40*20*Cos(150°)⇒b≈58 условных единиц длины
Недостающие углы найдем по теореме синусов
(под SinA подразумевается Sin∠A и т.д.)
≈0,34 ⇒ ∠A≈20°
≈0,17⇒ ∠C≈10°
(можно сделать проверку - сложив все углы и убедиться что их сумма равна 180°)
6) По теореме косинусов найдем все углы
≈0,59 ⇒ ∠A≈54°
Так как длина сторон а и с равна, то соответственно противоположные им углы - равны, т.е. ∠A=∠С≈54°(можно пересчитать по схожей схеме, числа будут те же)
≈0,31 ⇒ ∠B≈72°
Сложив все углы получаем итоговую сумму 180°, значит расчеты выполнены верно
b²=a²+c²-2ac*Cos∠B=40²+20²-2*40*20*Cos(150°)⇒b≈58 условных единиц длины
Недостающие углы найдем по теореме синусов
(под SinA подразумевается Sin∠A и т.д.)
≈0,34 ⇒ ∠A≈20°
≈0,17⇒ ∠C≈10°
(можно сделать проверку - сложив все углы и убедиться что их сумма равна 180°)
6) По теореме косинусов найдем все углы
≈0,59 ⇒ ∠A≈54°
Так как длина сторон а и с равна, то соответственно противоположные им углы - равны, т.е. ∠A=∠С≈54°(можно пересчитать по схожей схеме, числа будут те же)
≈0,31 ⇒ ∠B≈72°
Сложив все углы получаем итоговую сумму 180°, значит расчеты выполнены верно
95