Log3 x> log3 (5 -x)
Укажите сумму целых решений неравенства
0).Выделите корень уравнения, принадлежащий решению неравенства
х2 + 59х –122 ≤ 0.
Решение: 1 способ. 3√х + 34 - 3√ х – 3 = 1
(3√х + 34)3 - 3 (3√х + 34)2 3√ х – 3 + 3 (3√х + 34) ( 3√ х – 3)2 - ( 3√ х – 3)3 = 1
(х + 34) - 3 (3√х + 34) 3√ х – 3 (3√х + 34) - 3√ х – 3) – ( х – 3) = 1
37 – 3 3√(х +34)(х-3) = 1
3√ х2 + 31х – 102 = 12
х2 + 31х – 102 =1728
х2 + 31х - 1830 = 0
х1= 30; х2= - 61 Ответ: 30; - 61
Проверка показывает, что оба числа являются корнями уравнения.
2 способ.
3√х + 34 - 3√ х – 3 = 1
3√х + 34 = 1 + 3√ х – 3
( 3√х + 34)3 = (1 + 3√ х – 3)3
х +34 = 1 + 33√х – 3 + 3( 3√ х – 3)2 + х – 3
3√ х – 3 =а, то 3а2 + 3а – 36 = 0
а2 + а – 12 = 0
а1=3, а2=-4
3√ х – 3 =3, х=30
3√ х – 3 = -4, х = - 61 Ответ: 30; - 61
3 способ.
3√х + 34 - 3√ х – 3 = 1
х + 34 =у3, х – 3 =а3
х + 34 =у3,
х – 3 =а3,
у – а = 1
37 = у3 – а3 ; у3 – а3= (у – а)(у2 +уа +а2)= (у – а)((у – а)2 +3уа)
37 = 1(1 + 3уа); уа =12.
Получаем, уа =12, у=4, а= 3 или у =-3, а = -4
у – а = 1
Откуда, х – 3 = 27, х1=30
х – 3 = -64, х2 = - 61 Ответ: 30; - 61
2.Решите неравенство методом введения новой переменной: х - √х – 2 ≤ 0
Решение: √х =а, а2 – а – 2≤ 0,
+ - +
-1 2
- 1 ≤ а ≤ 2, - 1 ≤ √х ≤ 2, 0 ≤ х ≤ 4
3. Решите неравенство по алгоритму: g(х)≥0
√f(х) ≤ g(х) ↔ f(х) ≥0
f(х) ≤ g2(х)
√х2 – 3х – 18 lt; 4 – х, 4 – х ≥0,
х2 – 3х – 18 ≥0
х2 – 3х – 18 lt; 16 – 8х + х2
х ≤ 4
х2 – 3х – 18 ≥0
х lt; 6,8
Ответ: (-∞; - 3]
4. Решите неравенство по алгоритму: g(х)≥0
√f(х) ≥ g(х) ↔ f(х) ≥ g2(х)
f(х) ≥0
g(х) lt; 0
√ х – 2 lt; х – 4, х – 4gt;0 или х – 4 ≤0
х – 2 gt; х2 – 8х + 16 х - 2≥0
х € (4;6) х € [2; 4]
Ответ: [2; 6)
Задачи для решения. 1. Решите уравнения, используя свойство корня n-ой степени: √ 11 + 3х – 5х2 = 3 ; 5√ х4 - 49 = 2 ; √ х2 –16 = - √ х – 4; (х2 – 4) √х + 1 = 0; √ 7 + 3√( х2 +7) = 3. Найдите целый корень. Найдите произведение корней. Найдите сумму корней.
2. Решите уравнение методом введения новой переменной: х2 + √ х2 +20 = 22.
3.Решите уравнение методом умножения на сопряженное выражение:
√ 2х2 + 8х +7 - √ 2х2 – 8х +7 = 2х.
4. Решите уравнение методом разложения подкоренного выражения на множители:
√ 2х2+ 5х +2 - √ х2 + х – 2 = √ 3х + 6 .
5. Решите уравнение методом выделения полного квадрата в подкоренном выражении:
√ х + 5 + 2√ (х +4) - √ х + 8 - 4√( х +4) = √ х +4 .
7. Решите неравенства:
√ - х2 – 3х +4 gt;2; 5√х5 +х2 – 4 gt; х; 5х – 17 √х+5 + 31 lt;0 ;
√х +4 ≥ 5 - √9 - х ; √х- 3 • 5√ 5 – х ≥0 ; √ х2 – 3х – 18 lt; 4 – х; √ х2 + 3х – 18 gt; 2х +3.