Регистрация
Войти
Стать экспертом Правила
Химия | 4-7 класс

Сколькими способами можно разложить 3 письма в 3 конверта​

ОТВЕТЫ

Конверты могут быть одинаковыми и разными. Письма могут быть одинаковыми или разными. В каждом конверте может оказаться только по одному или по множеству писем.

Итого имеем 2*2*2 = 8 возможных толкований этой задачи. Первая подзадача по определению количества толкований решена ))

Начнем со случаев когда в каждом конверте должно оказаться только по одному письму.

В случае когда и конверты и письма одинаковы - 1 возможный вариант. По одному одинаковому письму в одинаковых конвертах.

Когда конверты разные , а письма одинаковые , и наоборот конверты одинаковые , а письма разные - также один возможный вариант. Случаи одного разного письма в одинаковых конвертах и одинакового письма в разных конвертах неотличимы.

Случай разных писем в разных конвертах - классическая задача на перестановки

Р(3) = 3! = 6 возможных вариантов.

Теперь разберемся со случаями когда в одном конверте может быть несколько писем.

При одинаковых письмах в одинаковых конвертах

1 - 1 - 1

2 - 1 - 0

3 - 0 - 0

три возможных варианта.

Случай разных писем в одинаковых конвертах.

1 - 1 - 1

0 - 1 - 2 3 варианта в зависимости от того какое письмо одно.

0 - 0 -3

Всего 5 вариантов.

Случай одинаковых писем в разных конвертах.

1 - 1 - 1

0 - 1 - 2

0 - 2 - 1

1 - 0 - 2

1 - 2 - 0

2 - 0 - 1

2 - 1 - 0

0 - 0 - 3

0 - 3 - 0

3 - 0 - 0

десять возможных вариантов.

Ну и наконец случай разных конвертов и разных писем даёт нам

1 - 1 - 1 - 6 вариантов

0 - 1 - 2 - 3 варианта

0 - 2 - 1 - 3 варианта

1 - 0 - 2 - 3 варианта

1 - 2 - 0 - 3 варианта

2 - 0 - 1 - 3 варианта

2 - 1 - 0 - 3 варианта

0 - 0 - 3 - 1вариант

0 - 3 - 0 - 1вариант

3 - 0 - 0 - 1вариант

Итого - можно и сразу , но расписано для понимания 3^3 = 27 вариантов.

Полный на такую на первый взгляд простую задачу должен включать все возможные варианты, а то вдруг у Вас на экзамене по терверу такой вот преподаватель попадется )))

P.S. Когда уже решение было опубликовано - пришло мне замечание от благодарных студентов ( ну или от их приунывших преподавателей ).

- Один ты что ли такой вредный?

- А где варианты с двумя одинаковыми конвертами и письмами и одним разным?

Приходится исправляться !

Когда по одному письму в конверте.

Случай (2 одинаковых конверта, одно отличное ) и ( 2 одинаковых письма одно отличное)

K1 K1 K2

-----------

П1 П1 П2

П2 П1 П1

2 варианта

Случай (2 одинаковых конверта, одно отличное ) и ( 3 различных письма)

K1 K1 K2

-----------

П1 П2 П3

П1 П3 П2

П3 П2 П1

3 варианта

Случай (3 различных конверта ) и ( 2 одинаковых письма одно отличное)

K1 K2 K3

----------

П1 П1 П2

П2 П1 П1

П1 П2 П1

3 варианта

Когда по множеству писем в конверте.

Случай писем (2+1) в одинаковых конвертах.

П1-П1-П2

П1П1-П2-0

П1П2-П1-0

П1П1П3-0-0

Всего 4 варианта.

Случай одинаковых писем в (2+1) конвертах.

K1 K1 K2

----------

1 - 1 - 1

0 - 1 - 2

0 - 2 - 1

1 - 2 - 0

0 - 0 - 3

3 - 0 - 0

шесть возможных вариантов.

Случай (2+1) писем в (2+1) конвертах

K1 K1 K2

-----------

П1-П1-П2

П1-П2-П1

0-П1-П1П2

0-П2-П1П1

0-П1П1-П2

0-П1П2-П1

П1-П1П2-0

П2-П1П1-0

0-0-П1П1П2

П1П1П2-0-0

Десять возможных вариантов.

Случай разных писем в (2+1) конвертах

K1 K1 K2

-----------

П1-П2-П3

П1-П3-П2

П2-П3-П1

0-П1-П2П3

0-П2-П1П3

0-П3-П1П2

0-П1П2-П3

0-П1П3-П2

0-П2П3-П1

П1-П2П3-0

П2-П1П3-0

П3-П1П2-0

0-0-П1П2П3

П1П2П3-0-0

14 вариантов

Случай (2+1) писем в разных конвертах

К1 К2 К3

------------

П1-П1-П2

П2-П1-П1

П1-П2-П1

0 -П1-П1П2

0-П2-П1П1

0-П1П1-П2

0-П1П2-П1

П1-0-П1П2

П2-0-П1П1

П1-П12-0

П2-П1П1-0

П1П1-0-П2

П1П2-0-П1

П1П1-П2-0

П1П2-П1-0

П1П1П2-0-0

0-П1П1П2-0

0-0-П1П1П2

18 вариантов.

СПАСИБО 0
Для написания вопросов необходимо войти в систему
Контакты
Реклама на сайте
Спрошу
О проекте
Новым пользователям
Новым экспертам